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WHAT IS THE MOST EFFICIENT HIGH-ENERGY ACCELERATOR?’

Paul J. Channell
~ Los Alamos National Laboratory, Los Alamos, New Mexico 87545

ABSTRACT

The accelerator configuration that will result In the largest
fraction of accelerator kinetic energy transferred to accelerated
particles Is explicitly determined from general principles.

DISCUSSION

The question posed in the title of this paper can be Interpreted
In various ways. Rather than survey all the types of accelerators
that exist or have been proposed In search of a candidate for the
most efficient accelerator, I will propose a specific definition for
“most efficient accelerator” and then use this definition to
determine what the most efficient accelerator should look like.
Surprisingly, if we consider only the kinetic energy in the
accelerator, a definite answer emerges. An answer to this question
that includes the contribution of field energy vIII be considerably
more difficult to find and is certainly fraught with difficulties,
both in determining what constitutes an acceptable accelerator and
with certain mathematical problems of a technical nature.

By “most efficient accelerator” I mean an accelerator such that
the greatest fraction of accelerator energy is extracted by the
passage of a single bunch of particles. This definition obviously
begs the question of whether or not higher efficiency might not be
obtained by energy storage and extraction over the duration of many
bunches. Though I do not address the question of multiple bunches
and efficiency, it may be amenable to the kind of analysis I present
here,

I also define “high-energy” to mean that the relativistic
factor, Y, of the particles to be accelerated Is already large
enough that it changes by on!y a small amount as it passes a given
point in the accelerator. Precisely how large this is will be
specified presently,

Accelerator energy to be extr cted can be categorized as either
$field energy, i.e., total (E2 + B )/8w, or as kinetic energy

of particles composing the accelerator. rhe energy in most
;c;elerators !s a mixture of both field energy and kinetic energy,

the field energy in a cavity and the kinetic ene:gyof the
p~r~;cles comprising the currents in the “ails. To analyze the
contrib~tion of f~eld energy is technicd];y dlfftcult b~c~use of
various spurious singularities that can arise; for example, by
placing two charged particles arbitr~rily close together, one can,
classically, exteact arbitrarily large amounts of enerqy with
arbitrarily small displacements. Whether one should regularize
these singularities with a quanturt]model or by smoothing LS !n a
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plasma model or in some other fashion is not clear and may not, in
fact, have a single answer independentof circumstances. Because of
these ambiguities of formulation and difficulties in technical
detail, I wI1l Ignore field energy and treat only the kinetic energy,

The question I have posed can now, within the context of the
above assumptions, be rephrased as “Hhat distribution of kinetic
energy among accelerator particles will result in the maximum
fraction of that kinetic energy transferred to accelerated
particles?” In other words, we only have to analyze the interaction
of a single accelerator particle with the accelerated bunch to
determine what initial velocity at that initial posltlon will result
In the maximum transfer of energy to the bunch. It Is obvious that
the answer is ronzero because a particle at rest can only gain
energy from the bunch, not impart energy to it. That we can Ignore
the Influence on the trajectory of an accelerator particle of the
other accelerator particles is partially justified by our neglect of
field energy and will be discussed after the calculations.

DERIVATION

Though the question, now, fs perfectly well speclfled and could,
In principle, be answered in general, I w1ll make a number of
additional nonessential assumptions to simplify the analysis and
arrive at an explicit answer. These assumptions are (1) the
accelerating gradient Is small enough that the bunch particles can
be assumed to follow stra!ght-llne constant-en~rgy trajectories
during the interaction (this 1s really a limitation on the total
number of partlclas supplylng the ~nergy), (2) the particles
supplying the energy can be treated nonrelat~vlstlcally (this turns
out to Involve a llmltatlonon the total number of particles in the
bunch), (3) the accelerator particles are arranged about the bunch
In an azlmuthally symmetr~c conftguratlon, and (4) the accelerated
bunch has transverse dimensions small enough to be ignored, Having
made these assumptions, I can now investigate the motion of an
accelerator part!cle under the Influence of the Fields of the
accelerated bunch that can be assumed to have a straight-llne
constant-energy tra~ectory, The equat!on of mot~on of such a
particle Is

m$ +=eE, (1)

where m 1s the mass, e IS the charge, ; IS the electrlc field of the
bunch, and where we have ignored the forc~ from the magn~tlc field
because of the assumption of nonrelativlsticmot!on and because the
electrfc and magnetic fields of the bunch will be about equal In
magnitude. The total energy transfer to this partfcle from the
bunch !s

(2)



where ~(t) Is the solution of Eq. (1) and ;(t) is the electric field
of the bunch evaluated at the position of thi!particle at time t.
The solution to Eq. (1) can be written as

J
t+

v(t) = ?0 + dt, eE(t’)
m“

-m
(3)

If we let the z~axis be the path of the accelerated bunch and assume
that the accelerator particle lies in the x-z pla,le,then by using
Eq. (3) in Eq. (2), we find

j

w

Ace dt [Ex(t)vox + Ez(t)vozl
-a

If we assume that the center of the bunch passes z = O at t = O,
then the bunch can be described in terms of a distribution’,g(z),
where g is normalized to 1 and is the relative density of particles
that cross z = O at t - T. The electric fields due to the bunch
are then the integrals over the bunch of the well-knownl fields
due to a single relativistic particle; I.e.,

\

Ex(t) = Ney dz 9(T) x(t)

[x2(t) + Y2v2(t +7 -*)213’2

and

!

z(t),g(7) (t+t-—
Ez(t) = Nev d~ :(t))213/2 ‘[x2(t) + y2v2(t + z - ~

(5)

(6)

where N is the total number of particles in the bunch, and x(t) ai~d
z(t) are the coordinates of the accelerator particle. Thus, we now
need x(t) and z(t), which, through Eq. (3), depend on E(t). To
solve these equations, we make an expansion and use our assumption
that there are not too many particles in the bunch. Therefore, the
electric fields are not large enough to cause a change in transverse
position comparable to the transverse coordinate, Xo, that the
accelerator particle would have at t - 0 in the absence of the
bunch. The zero-order terms, I.e., the result assuming stationary
accelerator particles, in this expansion contribute the main effect,
but I keeD throuah the first-order terms to confirm that the”
corrections are ~ndeed small,

~efor~ I begin-the expansion, I will collect a 1 dimensional
nlng dimensionless variables as::;n:::ies into-coefficientsbydef

~=vJ
-xo’ (7)
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x(t) ,
?2— - * and

‘o

--YW2 ,z=
‘o

(8)

(9)

(lo)

(11)

where, with the above assumptions, ~ and Z are small expansion
quantities. With these definitions, the electric fields, Eqs. (5)
and (6), can be expressed as

and

(12)

(13)

where the Integrals are now dlmenslonl~ss and_are of order unity.
Let us begin the expansion about (x - 0, z = 0). To zeroth and

first order, Eqs. (12) and (13) become

(14)

and

(15)

,.



Using Eq. (3) and
easy to see that,
expressed as

the definitions of dimensionlessguanti~ies, !t is
to first order, the coordinates x and z can be

and

(17)

Note that the glectrlc fields have zgro-or~er terms that survive
even when x, 2+(), Note also that x and z are proportional to
l/y and thus vanish at very high bunch energies.

To facilitate further manlpulatlons, let us define the following
functions:

and

* (18)

* (i!?)

* (20)

* (21)

. (22)

With these deflnltlons we find that Eqs. (14), (15), (16), and (17)
can be rewritten as

Ex(~) =~t(l +bhl - 31h2 + 3zh31 , (23)

‘o

‘e2 [-h4 + 31h3 +EZ(F) ~— ~h, - 3Zh51 , (24)

‘o



(25)

(26)

Us!ng Eqs. (25) and (26) in Eqs. (23) and (24) and putting the
results in Eq. (4) we find that the energy change can be written as

2
Ac=$-

[
~ (a3+7)] ,‘oxal + ‘oza2 + Ne2

o v yv mv X.
(27)

where we have defined

i

m

al = -0
d~[(l+i)h, - 3ih2 + 3Zh31 , (28)

(29)

and

(31)

Note that these coefficients contain zeroth-, first-, and second-
order terms. To be consistent, we should drop the quadratic terms;
let us define

(32)



a20

a30

a40

al1

a21

a31

and

’41

i

T
+h 1 d~’[~(h, - 3h2) + 3ih31} ,

-w

f

t

+ ‘4 -m
d~’[3~h3+ i(h, - 3h5)l} ,

(33)

(34)

(35)

(36)

(37)

(3a)

(39)

so that in this approx!matlon

al ‘alo+all ‘ (40)

a2 ‘a20+a21 ‘ (41)

a3sa30+a31 ‘ (42)

and

a4 ‘a40+a41 “ (43)

We now want tcImaximize the function f s -At/c. (c. Is the

lnlt!al energy of an accelerator particle, co = mv&2) with respect

.



v
to the initial velocity, Vo; this will maximize the fraction of energy
transferred to the accelerated bunch. Continuing with the expansion,
we write

Ac = Aco + Ac, , (44)

and
+
vo =;.+; 1’

(45)

where the subscripts on the right-hand sides refer to the order of
the term. To maximize f we require that

af=o
a;. “

(46)

It is easy to confirm that to lowest order, Eq. (46) becomes

aAEo 2ACOW0
—=

2“
(47)

a?. W.

Using Eqs. (27) and (40)-(43) in Eq. (47), a little calculation
reveals that the maximum condition becomes

2WOX

[

‘oza20 Ne2a30 Ne2a40

alo = T
—— —

‘ox ’10 + y + mvx 1+ymvxo ‘
‘o o

and

%J)= 2WOZ

[

‘02a20 Ne2a30 Ne2a40
—. —

Y 7 ‘ox alo + y + mvx 1+ymvxo ‘
‘o

o

Taking the ratioof Eqs. (49) and (48) gives

’02 a20
Tox ‘~ “

(48)

(49)

(50)

Thus, we see that the z component of the velocity is smaller than
the radiai component by at least l/Y. In addition, if we assume
for simplicity that the bunch is symmetric about its center, i.e.,

?j(-i)= tj(;) , (51)

then it is easy to see thata20 - 0 and, thus, that Wz = O.
Therefore, with the assumption of symmetry, Eq, (48) gas the solution

.



w -2Ne2a30
G!i = mvxoa,o ‘ (52;

where we have used the fact that a40 also vanishes under the
assumption of symmetry. Inserting these solutions in the expression
for the fractional energy extracted, we find that to lowest order,
the fraction Is

2
alo .

‘0 = 2a~
(53)

Finally, using the assumption of symmetry, Eq. (51), one can easily
show that

2
alo

a30=T ‘
(54)

so that the maximum extracted fraction is f. = 1 (i.e., 100%). The
initial velocity required to produce this optimum efficiency can be
obtained from Eqs. (52) and (54) and is given by

wOz = O , and

-Ne2’%w—ox = mvx ‘o

(55)

(56)

where alo is given by Eq. (32). In summary, the optimum accelerator
configuration is ozs in which the accelerator particles are moving
purely radially (for a symmetric bunch) with a veloclty proportional
to the number of particles in the accelerated bunch and inversely
proportional to the distance of the accelerator p~rticle from the
bunch axis. As a numerical example, let us consider the following
case:

N= 10’0 *

alo s ‘ ‘

(57)

(58)

V=c , and (59)

x =Imm. (60)
o

We then find that

wox—-G.028 ,c
(61)

thus confirming, a posteriori, the nonrelativistlc assumption.



Carrying out this expansion to any
straightforwardbut tedious. For comp”
first-order correction to Wo, i.e., WI

‘1)(

and

‘lZ

If
cz~1
rat

~
wo

and

.2NJ
[

a31 - a41
mvxo all ‘—‘1O Y2a1o

order is completely
eteness, we can give the

-N& (
tkt,, aa31 1 aa41.—

mvx Zaloq+ ~+ )1Y2 avox ‘o
(62)

-2N2e4

(

aal1 ~a31 1 aa41

)
‘m2v2x2 -zalo~+~+p~ “

(63)

o

n Eqs. 162) and (63) we insert theexpresslons (36)-(39) for
and expressions (25) and (26) for x an~ z, we see that the
o of wl to w. is approximately

= Ne2 (64)
~mv2xo

thus Is small when the right hand side is small. As an example,
taking our previous parameters (57)-(60), we find that for the
right~hand side of Eq. (64) to be small, we must require

y > 0.028 , (65)

khich Is obviously true. We thus see that the nonrelativistlc
restriction, I.e., Eq. (56) is small, is more stringent than the
condition that the lowest-order term dominate.

To evaluate the condition that the change in bunch energy be
small compared to the energy, we first observe that the time T for a
bunch particle to pass an accelerator parttcle Is approximately

T ‘o (66)
‘~ “

The amount of energy given up by an accelerator particle at X. is

~2e4
Acz— (67)

2mv2x 2 ‘
o

so that If the number density of accelerator particles at that X.
fS n(xo), the total energy galfiedby the bunch from Particles at
that location Is



!
~2e4

‘&bunch = 2“ cTxon(x )
0 2mv2x 2

dxo .

0

(68)

Thus, the enerqy gain per bunch particle compared to its energy is

~ . mNe4
Y Jn(xo)dxo ,

y2m2v4
(69)

which should be small for our approximations to be justifleci.
If an accelerator particle is acted on by potentials from other

accelerator components then the amount of energy transfer to the
bunch kill be essentially unchanged if this energy transfer is large
compared to the difference in potential in the distance the particle
moves in time T [Eq. (66)1. Thus, our analysis will have greater
validity than the Initial assumptions seemed to imply under most
circumstances, though extreme accelerator conditions with steep
gradients In potential may require further analysis.

In summary, I have found, considering only the kinetic energy,
the optimum accelerator configuration and the maximum efficiency
‘hat can be obtained. Clearly a number of refinements to my
calculation could be made; in particular, the effects of bunch
asymmetry and transverse bunch size could be easily taken into
account. Whether such a general analysts can be done including the
field energy Is still open to question. In any event, It Is
tempting to conjecture that no other configuration with an
efficiency this high (100%) exists. Whether the configuration I
have found can be realized or Is practical is a question for future
study.
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